CMSC201
Computer Science I for Majors

Lecture 20 - Recursion (Continued)

Prof. Jeremy Dixon

Last Class We Covered

- Stacks
- Recursion
- Recursion
- Recursion
- Parts of a recursive function:
- Base case: when to stop
- Recursive case: when to go (again)

Any Questions from Last Time?

Today’s Objectives

- To gain a more solid understanding of recursion
- To explore what goes on "behind the scenes"
- To examine individual examples of recursion
- Binary Search
- Hailstone problem (Collatz)
- Fibonacci Sequence
- To better understand when it is best to use recursion, and when it is best to use iteration

Review of Recursion

What is Recursion?

- Solving a problem using recursion means the solution depends on solutions to smaller instances of the same problem
- In other words, to define a function or calculate a number by the repeated application of an algorithm

Recursive Procedures

- When creating a recursive procedure, there are a few things we want to keep in mind:
-We need to break the problem into smaller pieces of itself
- We need to define a "base case" to stop at
-The smaller problems we break down into need to eventually reach the base case

"Cases" in Recursion

- A recursive function must have two things:
- At least one base case
- When a result is returned (or the function ends)
- "When to stop"
- At least one recursive case
- When the function is called again with new inputs
- "When to go (again)"

Code Tracing: Recursion

Stacks and Tracing

- Stacks will help us track what we are doing when tracing through recursive code
- Remember, stacks are LIFO data structures
- Last In, First Out
- We'll be doing a recursive trace of the summation function

Summation Function

- The addition of a sequence of numbers
- The summation of a number is that number plus all of the numbers less than it (down to 0)
- Summation of 5: $\quad 5+4+3+2+1$
- Summation of 6: $6+5+4+3+2+1$
- What would a recursive implementation look like? What's the base case? Recursive case?

Summation Function


```
main()
def main():
    summ(4)
def summ(num):
    if num == 0:
        return 0
        else:
        return num + summ(num-1)
```

```
main()
def main():
    \downarrowsumm(4)
```

def summ(num):
if num == 0:
return 0
else:
return num + summ(num-1)

```
main()
def main():
    \(\downarrow\) summ(4)
                                    num \(=4\)
def summ(num):
    if num == 0: num: 4
        return 0
    else:
        return num + summ(num-1)
```

 summ (4)
 main()
 main()
def main():
\downarrow summ(4)
num $=4$
def summ(num):
if num == 0: return 0 num:
else:

This is a local variable. Each time the summ () function is called, the new instance gets its own unique local variables.
return num + summ(num-1)
summ (4)

```
main()
def main():
    \downarrowsumm(4)
                                    num = 4
def summ(num):
    if num == 0: num: 4
        return 0
    else:
        return num + summ(num-1)
def summ(num): num = 3
    if num == 0:
        return 0 num: 3
```

 summ (3)
 summ (4)
 main()
 $$
\text { num }=4
$$

\downarrow summ(4)
def summ(num):

def summ(num): if num == 0: return 0 else:
return num $+\operatorname{summ}($ num-1)
num:
2
def $\operatorname{summ}($ num $): \rightarrow$ num $=3$
if num == 0: return 0 num: 3
3
\square3

def summ(num):
if num $==0$:
return 0
2
num $=4$
def summ(num):
if num $==0$: num: 4
return 0
else:
return num + summ(num-1)
def $\operatorname{summ}($ num $): \longleftarrow$ num $=3$
if num == 0:
return 0 num: 3
def summ(num):
return num + summ(num-1)
def summ(num):
if num $==0$:
return 0
\checkmark else:
return num + summ(num-1)

num $=1$

def summ(num):
if num == 0:
return 0

return num + summ (num-1) summ (2) summ (3) summ (4) main()
def summ(num):
if num $==0$:
return 0
2
num $=4$
def summ(num):
if num $==0$: num: 4
return 0
else:
return num + summ(num-1)
def $\operatorname{summ}($ num $): \longleftarrow$ num $=3$
if num == 0:
return 0 num: 3
def summ(num):
return num + summ(num-1)
def summ(num):
if num $==0$:
return 0
\checkmark else:
return num + summ(num-1)

num $=1$

def summ(num):
if num == 0:
return 0

return num + summ (num-1) summ (2) summ (3) summ (4) main()

def main():
\downarrow summ (4)

$$
\text { num }=4
$$

def summ(num):

$$
\begin{aligned}
& \text { if num }==0: \text { num: } 4 \\
& \text { return } 0 \\
& \text { else: } \\
& \quad \text { return num + summ(num-1) }
\end{aligned}
$$

$$
\text { def } \operatorname{summ}(\text { num }): \longleftarrow \text { num }=3
$$

$$
\begin{aligned}
& \text { if num }==0: \text { num: } 3 \\
& \text { return } 0 \\
& \text { else: }
\end{aligned}
$$

def summ(num):
if num == 0:
return 0
num:
2
def summ(num):
if num == 0:
return 0

return num + summ (num-1)

return 0 def summ(num):

if num == 0:
return 0 else:
return num + summ (num-1)

def main():
\downarrow summ(4)
num $=4$
def summ(num):
if num == 0:
return 0
else:
return num + summ(num-1)
def $\operatorname{summ}($ num $): \leadsto$ num $=3$
if num == 0:
return 0 num: 3
Velse:
return num + summ(num-1)
return 1 + 0 (= 1)
def summ(num):
if num == 0:
def summ(num):
if num == 0:
return 0
else:
summ (3)
summ (4)
main()
num:
2
return 1
num:
return num + summ (num-1)
num: 3

STACK

def main():
\downarrow summ(4)

$$
\text { num }=4
$$

def summ(num):
if num $==0: \quad$ num: 2
return 0
else:
\quad return num + summ(num-1)
def summ(num):

$$
\begin{aligned}
& \text { if num }==0: \text { num: } 4 \\
& \text { return } 0 \\
& \text { else: } \\
& \quad \text { return num }+\operatorname{summ}(\text { num-1 })
\end{aligned}
$$

$$
\text { def } \operatorname{summ}(\text { num }): \longleftarrow \text { num }=3
$$

|if num == 0: return 0 Velse:
num:
 return num + summ(num-1)
return $2+1$ (= 3)

```
main()
def main():
    \downarrowsumm(4)
                                    num = 4
def summ(num):
    if num == 0: num: }
        return 0
    else:
        return num + summ(num-1)
def summ(num): num = 3
    if num == 0:
        return 0 num: 3
    Velse:
        return num + summ(num-1)
```

return 3 + 3 (= 6)

POP!
POP! POP! POP!
summ (4) main()

STACK

return 4 + 6 (=10)

POP!
POP!
POP! POP! POP!
main()
STACK

return None

return control

Returning and Recursion

Returning Values

- If your goal is to return a final value
- Every recursive call must return a value
- You must be able to pass it "back up" to main ()
- In most cases, the base case should return as well
- Must pay attention to what happens at the "end" of a function.
 def main():

Velse:
num $+\operatorname{summ}($ num-1)
def summ(num):
if num == 0:
return 0 num:
Velse:
num + $\operatorname{summ}($ num-1)
num $=2$

Does this work? What's wrong?

Hailstone Example

The Hailstone Problem

- Included as part of the "Nested and While Loops" homework assignment
- The problem is actually known as the "Collatz Conjecture"

THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY TWO AND IF IT'S OOD MULTIPLY IT BY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LONG ENOUGH, EVENTUALLY YOUR FRIENDS WILL STOP CAUING TO SEE IF YOU WANT TO HANG OUT.

Rules of the Collatz Conjecture

- Three rules to govern how it behaves
- If the current height is 1 , quit the program
- If the current height is even, cut it in half (divide by 2)
- If the current height is odd, multiply it by 3 , then add 1
- This process has also been called HOTPO
- Half Or Triple Plus One

Implementation

- In your homework, you implemented this process using a while loop
- Can you think of another way to implement it?
- Recursively!

Designing our Recursive Function

- What is our base case?
- When the Height is 1
- What is our recursive case?
- We have two! What are they?
- Height is even: divide by 2
- Height is odd: multiply by 3 and add 1

Exercise

- Create a function hail () that takes in a number and prints out the height of the hailstone at each point in time
- Important considerations:
- What do we check first? Base or recursive case?
- Is this function returning anything? Why or why not?

Exercise Details

- Rules for function behavior
- If the current height is 1 , quit the program
- If the current height is even, cut it in half (divide by 2)
- If the current height is odd, multiply it by 3 , then add 1
- Create a function hail() that
- Takes in a number
- Prints out the height of the hailstone each time

Binary Search

Searching

- Given a list of sorted elements (e.g., words), find a specific word as quickly as possible
- We could start from the beginning and iterate through the list until we find it
-But that could take a long time!

Binary Search

- Uses a "divide and conquer" approach
- Go to the middle, and compare the element there to the one we're looking for
- If it's larger, we know it's not in the last half
- If it's smaller, we know it's not in the first half
- If it's the same, we found it!

Binary Search Example

Find "J"

Binary Search Example

Find "V"

Binary Search

- Can be implemented using a while loop
- But much more common to use recursion
- What is the base case?
- What is the recursive case?

Recursion vs Iteration

Recursion and Iteration

- Both are important
- All modern programming languages support them
- Some problems are easy using one and difficult using the other
- How do you decide which to use?

Use Iteration When...

- Speed and efficiency is an issue
- The problem is an obvious fit for iteration
- Processing every element of a list (or 2D list)

Use Recursion When...

- Speed is not an issue
- The data being processed is recursive
- A hierarchical data structure
- A recursive algorithm is obvious
- Clarity and simplicity of code is important

Fibonacci Sequences

Fibonacci Sequence

- Number series
- Starts with 0 or 1
- Next number is found by adding the previous two numbers together
- Pattern is repeated over and over (and over...)

Fibonacci Sequence

- Starts with 0, 1, 1
- Next number is ...?

$$
\begin{array}{llrllllllll}
0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\
89 & 144 & 233 & 377 & 610 & 987 & \ldots &
\end{array}
$$

Recursively Implement Fibonacci

- The formula for a number in the sequence:

$$
F(n)=F(n-1)+F(n-2)
$$

- What is our base case?
- What is our recursive case?
- How would we code this up?

Any Other Questions?

Announcements

- Lab is back in session this week!
- Lab 11 is on classes
- Project 1 is out
- Due by Tuesday, November 17th at 8:59:59 PM
- Do NOT procrastinate!
- Next Class: Dictionaries

